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Outline

• Representing knowledge using logic
– Agent that reason logically
– A knowledge based agent

• Representing and reasoning with logic
– Propositional logic

• Syntax
• Semantic 
• Validity and models
• Rules of inference for propositional logic
• Resolution
• Complexity of propositional inference.

• Reading: Russel and Norvig, Chapter 7



Knowledge bases

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system):
– Tell it what it needs to know

• Then it can Ask itself what to do - answers should follow from the KB

• Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

• Or at the implementation level
– i.e., data structures in KB and algorithms that manipulate them



Knowledge Representation
Defined by: syntax, semantics
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Reasoning: in the syntactic level

Example: zxzyyx  |,



The party example

• If Alex goes, then Beki goes: A  B

• If Chris goes, then Alex goes: C  A

• Beki does not go: not B

• Chris goes: C

• Query: Is it possible to satisfy all these 
conditions?

• Should I go to the party?



Example of languages 

• Programming languages:
– Formal languages, not ambiguous, but cannot express 

partial information. Not expressive enough.

• Natural languages:
– Very expressive but ambiguous: ex: small dogs and 

cats.

• Good representation language:
– Both formal and can express partial information, can 

accommodate inference

• Main approach used in AI: Logic-based 
languages.



Wumpus World  test-bed
• Performance measure

– gold +1000, death -1000
– -1 per step, -10 for using the arrow

• Environment
•

– Squares adjacent to wumpus are smelly
–

– Squares adjacent to pit are breezy
–

– Glitter iff gold is in the same square
–

– Shooting kills wumpus if you are facing it
–

– Shooting uses up the only arrow
–

– Grabbing picks up gold if in same square
–

– Releasing drops the gold in same square
–

• Sensors: Stench, Breeze, Glitter, Bump, Scream
•

• Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
•



Wumpus world characterization

• Fully Observable No – only local perception

• Deterministic Yes – outcomes exactly specified

• Episodic No – sequential at the level of actions

• Static Yes – Wumpus and Pits do not move

• Discrete Yes

• Single-agent? Yes – Wumpus is essentially a natural feature



Exploring a wumpus world
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Exploring a wumpus world



Logic in general

• Logics are formal languages for representing information such that conclusions can be 
drawn

• Syntax defines the sentences in the language

• Semantics define the "meaning" of sentences;

– i.e., define truth of a sentence in a world

• E.g., the language of arithmetic

– x+2 ≥ y is a sentence; x2+y > {} is not a sentence

– x+2 ≥ y is true iff the number x+2 is no less than the number y

– x+2 ≥ y is true in a world where x = 7, y = 1

– x+2 ≥ y is false in a world where x = 0, y = 6



Entailment

• Entailment means that one thing follows from another:

KB ╞ α

• Knowledge base KB entails sentence α if and only if α is true in 
all worlds where KB is true

– E.g., the KB containing “the Giants won” and “the Reds won” entails 
“Either the Giants won or the Reds won”

– E.g., x+y = 4 entails  4 = x+y

– Entailment is a relationship between sentences (i.e. syntax) that is 
based on semantics



Models

• Logicians typically think in terms of models, which are formally structured worlds with 
respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB)  M(α)

– E.g. KB = Giants won and Reds
won α = Giants won All worlds



Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, 
breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices  8 possible models



Wumpus models



Wumpus models

• KB = wumpus-world rules + observations



Wumpus models

• KB = wumpus-world rules + observations
• α1 = "[1,2] is safe", KB ╞ α1, proved by model checking



Wumpus models

• KB = wumpus-world rules + observations



Wumpus models

• KB = wumpus-world rules + observations
• α2 = "[2,2] is safe", KB ╞ α2



Propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic ideas

• The proposition symbols P1, P2 etc. are sentences

– If S is a sentence, S is a sentence (negation)

– If S1 and S2 are sentences, S1  S2 is a sentence (conjunction)

– If S1 and S2 are sentences, S1  S2 is a sentence (disjunction)

– If S1 and S2 are sentences, S1  S2 is a sentence (implication)

– If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)



Propositional logic: Semantics
Each world specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1

false true false

With these symbols 8 possible worlds can be enumerated automatically.

Rules for evaluating truth with respect to a world w:

S is true iff S is false  
S1  S2 is true iff S1 is true and S2 is true
S1  S2 is true iff S1is true or S2 is true
S1  S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1  S2 is true iff S1S2 is true and S2S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
P1,2  (P2,2  P3,1) = true  (true  false) =  true  true = true



Truth tables for connectives



Logical equivalence

Two sentences are logically equivalent iff true in same models: α ≡ ß iff α╞ β and β╞α



Wumpus world sentences

• Rules

– "Pits cause breezes in adjacent squares“

B1,1   (P1,2  P2,1)

B2,1   (P1,1  P2,2  P3,1)

• Observations

– Let Pi,j be true if there is a pit in [i, j].

– Let Bi,j be true if there is a breeze in [i, j].

 P1,1

B1,1

B2,1



Wumpus world sentences

KB
Let Pi,j be true if there is a pit in [i, j].

Let Bi,j be true if there is a breeze in [i, j].

 P1,1

B1,1

B2,1

• "Pits cause breezes in adjacent squares“

B1,1   (P1,2  P2,1)

B2,1   (P1,1  P2,2  P3,1)

Truth table for KB

1= no pit in (1,2)

2= no pit in (2,2)



Truth Tables
• Truth tables can be used to compute the truth value of any wff (well formed formula)

– Can be used to  find the truth of

• Given n features there are 2n different worlds (interpretations).

• Interpretation: any assignment of true and false to atoms

• An interpretation satisfies a wff (sentence) if the sentence is assigned true under the 

interpretation

• A model: An interpretation is a model of a sentence if the sentence is satisfied in that 

interpretation.

• Satisfiability of a  sentence can be determined by the truth-table

– Bat_on and turns-key_on  Engine-starts

• A sentence is unsatisfiable or inconsistent if it has no models

–

–
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Decidability – there exists a procedure that will correctly answer Y/N (valid or not) 

for any formula

Gödel's incompleteness theorem (1931) – any deductive system that includes 

number theory is either incomplete or unsound.



Gödel's incompleteness theorem

This sentence has no proof.



Validity and satisfiability
A sentence is valid if it is true in all worlds,

e.g., True, A A, A  A, (A  (A  B))  B

A sentence is satisfiable if it is true in some world (has a model)
e.g., A B, C

A sentence is unsatisfiable if it is true in no world (has no model)
e.g., AA

Entailment is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB  α) is valid 
(note : (KB  α) is the same as (KB  α))

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB α) is unsatisfiable



Validity



Inference methods
• Proof methods divide into (roughly) two kinds:

– Model checking

• truth table enumeration (always exponential in n)

• improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL), Backtracking 
with constraint propagation, backjumping.

• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

– Deductive systems

• Legitimate (sound) generation of new sentences from old

• Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

• Typically require transformation of sentences into a normal form



Inference by enumeration

• Depth-first enumeration of all models is sound and complete 

• For n symbols, time complexity is O(2n), space complexity is O(n)



Deductive systems : rules of inference



Resolution in Propositional Calculus
• Using clauses as wffs

– Literal, clauses, conjunction of clauses (CNFs)
• Resolution rule:

– Resolving (P V Q) and (P V  Q)      P
– Generalize modus ponens, chaining .
– Resolving a literal with its negation yields empty clause.

• Resolution rule is sound
• Resolution rule is NOT complete:

– P and R entails P V R but you cannot infer P V R from (P and R) 
by resolution

• Resolution is complete for refutation: adding (P) and (R) 
to (P and R) we can infer the empty clause.

• Decidability of propositional calculus by resolution 
refutation: if a sentence w is not entailed by KB then 
resolution refutation will terminate without generating the 
empty clause.

)( RQP 





Conversion to CNF

B1,1  (P1,2  P2,1)

1. Eliminate , replacing α  β with (α  β)(β  α).

(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2. Eliminate , replacing α  β with α β.

(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3. Move  inwards using de Morgan's rules and double-negation:

(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4. Apply distributivity law ( over ) and flatten:

(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)



Resolution algorithm

• Proof by contradiction, i.e., show KBα unsatisfiable



Resolution example

• KB = (B1,1  (P1,2 P2,1))  B1,1,   α = P1,2



Soundness of resolution



The party example

• If Alex goes, then Beki goes: A  B

• If Chris goes, then Alex goes: C  A

• Beki does not go: not B

• Chris goes: C

• Query: Is it possible to satisfy all these 
conditions?

• Should I go to the party?



Example of proof by Refutation 

• Assume the claim is false and prove inconsistency:
– Example: can we prove that Chris will not come to the 

party?

• Prove by generating the desired goal.
• Prove by refutation: add the negation of the goal and 

prove no model
• Proof:

• Refutation:
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Proof by refutation (inference)

• Given a database in clausal normal form KB

 Find a sequence of resolution steps from KB to the empty 
clauses

 Use the search space paradigm:

– States: current CNF KB + new clauses

–Operators: resolution

– Initial state: KB + negated goal

– Goal State: a database containing the empty clause

– Search using any search method



Resolution refutation search strategies

• Worst-case memory exponential

• Ordering strategies
– Breadth-first, depth-first

– I-level resolvents are generated from level-(I-1) or higher resolvents

– Unit-preference: prefer resolutions with a literal

• Set of support:
– Allows resolutions in which one of the resolvents is in the set of support

– The set of support: those clauses coming from negation of the goal or 
their descendants.

– The set of support strategy is refutation complete

• Input (linear)
– Restricted to resolutions when one member is an input clause

– Input is not refutation complete

– Example:  (P V Q), (P V Q), (P V Q), (P V Q) have no model



Proof by model checking 

• Given a database in clausal normal form KB 

 Prove that KB has (no) model – Propositional SAT

 A CNF theory is a constraint satisfaction problem:

– Variables:  the propositions

– Domains: {true, false}

– Constraints: clauses  (or their truth tables)

– Find a solution to the CSP. If no solution then no model.

– This is the satisfiability question

–Methods: Backtracking arc-consistency  unit 
resolution, local search



Properties of propositional inference

• Complexity 
– Checking truth tables is exponential
– Satisfiability is NP-complete
– Validity (unsatisfiability) is coNP-complete
– However, frequently generating proofs is easy

• Propositional logic is monotonic
– If you can entail alpha from knowledge base KB and if you add sentences 

to KB, you can infer alpha from the extended knowledge-base as well.

• Inference is local
– Tractable Classes: Horn, Definite, 2-SAT

• Horn theories:
– Q <-- P1,P2, ... ,Pn

– Pi, Q are atoms (propositions) in the language.
– Pi, Q may be missing.

• Solved by modus ponens or “unit resolution”





Forward chaining algorithm

• Forward chaining is sound and complete for Horn KB



Forward chaining

• Idea: fire any rule whose premises are 
satisfied in the KB,

– add its conclusion to the KB, until query is found



Forward chaining example
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Forward chaining example



Backward chaining (BC)

Idea: work backwards from the query q:

to prove q by BC,

check if q is known already, or

prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or

2. has already failed



Backward chaining example



Backward chaining example
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Backward chaining example



Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal 

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD 

program?

• Complexity of BC can be much less than linear in size 
of KB



Propositional inference in practice

Two families of efficient algorithms for propositional inference:
1. Apply inference rules : KB ╞ α if and only if

• (KB α) in unsatisfiable

• (KB  α) is valid

2. Prove that a set of sentences has no model
• (KB α) in unsatisfiable

• Complete backtracking search algorithms on CNF formulas
– DPLL algorithm (Davis, Putnam, Logemann, Loveland)

• Incomplete local search algorithms
– WalkSAT algorithm



The DPLL algorithm
Determine if a CNF propositional logic sentence is satisfiable.

Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses. 
e.g., In the three clauses (A  B), (B  C), (C  A), A and B are pure, C is impure. 
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

Modern DPLL
– Conflict-driven clause learning



The DPLL algorithm



The WalkSAT algorithm

• Incomplete, local search algorithm

• Evaluation function: The min-conflict heuristic of minimizing 
the number of unsatisfied clauses

• Balance between greediness and randomness
– Pick an unsatisfied clause

• With some probability pick literal to flip randomly

• Otherwise pick a literal that minimizes the min-conflict value

– Restart every once in awhile



The WalkSAT algorithm



Hard satisfiability problems

• Consider random 3-CNF sentences. e.g.,

(D  B  C)  (B  A  C)  (C  B  E)  (E 
D  B)  (B  E  C)

m = number of clauses 
n = number of symbols

– Hard problems seem to cluster near m/n = 4.3 (critical 
point) – phase transition



Hard satisfiability problems



Hard satisfiability problems

• Median runtime for 100 satisfiable random 3-CNF sentences, n = 50



Inference-based agents in the wumpus 
world

A wumpus-world agent using propositional logic:

P1,1

W1,1

Bx,y  (Px,y+1  Px,y-1  Px+1,y  Px-1,y) 
Sx,y  (Wx,y+1  Wx,y-1  Wx+1,y  Wx-1,y)
W1,1  W1,2  …  W4,4

W1,1  W1,2

W1,1  W1,3

…

 64 distinct proposition symbols, 155 sentences






